If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12n^2+20n-32=0
a = 12; b = 20; c = -32;
Δ = b2-4ac
Δ = 202-4·12·(-32)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-44}{2*12}=\frac{-64}{24} =-2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+44}{2*12}=\frac{24}{24} =1 $
| 180=2×+y | | 10=(1-5v)=54 | | x+35=x+23 | | -7n+2(9n+3)=4n+10-1 | | 2p-1/2=3p-4/5 | | 3.50x+2=3.25x+2 | | 3.50x+2=3.25+2 | | 2(4.5+2.5y)-9=5y | | -12=-7x+5(x-4) | | 4k+2(3k+8)=3k+10-8 | | -9-7x+6x=15 | | 8d+3d=63 | | 4h-2(h+4)=-18 | | 4g+9=2(g-6)=2g | | 7x-x-6=0 | | -6+5(-2h+5)=-h-8-6 | | 204-x=267 | | 59+.13x=48+.15x | | 0.25x+7=0.30x+5 | | 9x+-4=6x+2 | | -4x-2(8x+1=-(2x-10) | | 8x-77+3x-38=180 | | y=3(-10)-2 | | 119=7x+6(5x-11) | | x-3=-2.24 | | 3x5=49 | | 8/3=t/5 | | X*y=341 | | 12w=4w+24 | | -3m+2(m+2)=5 | | 2x+4x=3x+12+4 | | 10-6z=-104 |